发布日期:12/8/2021 4:44:54 PM

RNA结构是RNA发挥功能的基础。传统解析RNA结构的方法包括X射线、核磁共振和冷冻电子显微镜。这些方法无法做到高通量,更不能解析出细胞内高度动态的RNA结构。近年来,研究者们开发出了许多细胞内高通量探测RNA结构的技术,极大推动了RNA结构和功能的研究。但是这些技术探测到的RNA结构信号经常包含大量的缺失值,影响了后续对RNA功能的深入研究。人工智能方法在科学、技术多个领域都取得了成功应用,如果将其用于恢复由于实验和技术限制而缺失的RNA结构信号,很有可能解决上述问题。

2021年11月16日,清华大学张强锋课题组在Nature Machine Intelligence杂志上发表了题为 “一种恢复从探测实验得到的全转录组RNA结构图谱中缺失信号的深度学习方法”(A deep learning method for recovering missing signals in transcriptome-wide RNA structure profiles from probing experiments)的研究文章。该工作受自动驾驶领域中稀疏雷达信号恢复算法的启发,将RNA序列与其对应的RNA结构信号相结合,并通过屏蔽部分已知RNA结构信号来进行自监督式训练,建立了一种恢复实验缺失的RNA结构信号的新方法--StructureImpute。
      RNA结构测序经常会因覆盖度不够深而导致RNA结构信号缺失,极端情况下甚至会使RNA结构信号非常稀疏。准确地恢复出缺失的信号,将有利于RNA结构及功能的分析。非常有意思的是,在自动驾驶中也存在类似的信号缺失问题。雷达信号提供的周围物体的距离信息对于自动驾驶非常重要。在自动驾驶中通常采用多线雷达获得物体的三维点云信号。由于多线雷达设备昂贵,自动驾驶方案往往面临雷达信号非常稀疏(大量缺失)的挑战。大量的研究表明,可通过结合二维图像和稀疏的雷达信号,设计人工智能算法,实现缺失的雷达信号的恢复补全。GuideNet就是这样的一种雷达信号恢复补全方法。其使用配对的二维RGB图像和稀疏的三维雷达信号作为输入,采用自编码器的深度网络结构,通过二维物体信息的RGB图像引导缺失的三维物体雷达信号的恢复,从而实现三维雷达信号的补全。GuideNet 在多个数据集上的表现明显优于其他方法,也曾长期处在自动驾驶KITTI数据集雷达信号补全任务的榜首。

下一篇:中科院化学所宋延林课题组利用对称性破缺抑制卫星液滴取得重要进展
上一篇:百部碱不对称全合成研究取得进展